高一數(shù)學(xué)的教學(xué)計(jì)劃
時(shí)間流逝得如此之快,又將迎來(lái)新的工作,新的挑戰(zhàn),是時(shí)候開(kāi)始制定計(jì)劃了。相信大家又在為寫計(jì)劃犯愁了?下面是小編精心整理的高一數(shù)學(xué)的教學(xué)計(jì)劃,僅供參考,希望能夠幫助到大家。
高一數(shù)學(xué)的教學(xué)計(jì)劃1
平面上的直線就是由平面直角坐標(biāo)系中的一個(gè)二元一次方程所表示的圖形 。
教學(xué)目標(biāo)
(1)掌握由一點(diǎn)和斜率導(dǎo)出直線方程的方法,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式和直線方程的一般式,并能根據(jù)條件熟練地求出直線的方程.
(2)理解直線方程幾種形式之間的內(nèi)在聯(lián)系,能在整體上把握直線的方程.
(3)掌握直線方程各種形式之間的互化.
(4)通過(guò)直線方程一般式的教學(xué)培養(yǎng)學(xué)生全面、系統(tǒng)、周密地分析、討論問(wèn)題的能力.
(5)通過(guò)直線方程特殊式與一般式轉(zhuǎn)化的教學(xué),培養(yǎng)學(xué)生靈活的思維品質(zhì)和辯證唯物主義觀點(diǎn).
(6)進(jìn)一步理解直線方程的概念,理解直線斜率的意義和解析幾何的思想方法.
教學(xué)建議
1.教材分析
(1)知識(shí)結(jié)構(gòu)
由直線方程的概念和直線斜率的概念導(dǎo)出直線方程的點(diǎn)斜式;由直線方程的點(diǎn)斜式分別導(dǎo)出直線方程的斜截式和兩點(diǎn)式;再由兩點(diǎn)式導(dǎo)出截距式;最后都可以轉(zhuǎn)化歸結(jié)為直線的一般式;同時(shí)一般式也可以轉(zhuǎn)化成特殊式.
(2)重點(diǎn)、難點(diǎn)分析
、俦竟(jié)的重點(diǎn)是直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,以及根據(jù)具體條件求出直線的方程.
解析幾何有兩項(xiàng)根本性的任務(wù):一個(gè)是求曲線的方程;另一個(gè)就是用方程研究曲線.本節(jié)內(nèi)容就是求直線的方程,因此是非常重要的內(nèi)容,它對(duì)以后學(xué)習(xí)用方程討論直線起著直接的作用,同時(shí)也對(duì)曲線方程的學(xué)習(xí)起著重要的作用.
直線的點(diǎn)斜式方程是平面解析幾何中所求出的第一個(gè)方程,是后面幾種特殊形式的源頭.學(xué)生對(duì)點(diǎn)斜式學(xué)習(xí)的效果將直接影響后繼知識(shí)的學(xué)習(xí).
、诒竟(jié)的難點(diǎn)是直線方程特殊形式的限制條件,直線方程的.整體結(jié)構(gòu),直線與二元一次方程的關(guān)系證明.
2.教法建議
(1)教材中求直線方程采取先特殊后一般的思路,特殊形式的方程幾何特征明顯,但局限性強(qiáng);一般形式的方程無(wú)任何限制,但幾何特征不明顯.教學(xué)中各部分知識(shí)之間過(guò)渡要自然流暢,不生硬.
(2)直線方程的一般式反映了直線方程各種形式之間的統(tǒng)一性,教學(xué)中應(yīng)充分揭示直線方程本質(zhì)屬性,建立二元一次方程與直線的對(duì)應(yīng)關(guān)系,為繼續(xù)學(xué)習(xí)曲線方程打下基礎(chǔ).
直線一般式方程都是字母系數(shù),在揭示這一概念深刻內(nèi)涵時(shí),還需要進(jìn)行正反兩方面的分析論證.教學(xué)中應(yīng)重點(diǎn)分析思路,還應(yīng)抓住這一有利時(shí)使學(xué)生學(xué)會(huì)嚴(yán)謹(jǐn)科學(xué)的分類討論方法,從而培養(yǎng)學(xué)生全面、系統(tǒng)、辯證、周密地分析、討論問(wèn)題的能力,特別是培養(yǎng)學(xué)生邏輯思維能力,同時(shí)培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn)
(3)在強(qiáng)調(diào)幾種形式互化時(shí)要向?qū)W生充分揭示各種形式的特點(diǎn),它們的幾何特征,參數(shù)的意義等,使學(xué)生明白為什么要轉(zhuǎn)化,并加深對(duì)各種形式的理解.
(4)教學(xué)中要使學(xué)生明白兩個(gè)獨(dú)立條件確定一條直線,如兩個(gè)點(diǎn)、一個(gè)點(diǎn)和一個(gè)方向或其他兩個(gè)獨(dú)立條件.兩點(diǎn)確定一條直線,這是學(xué)生很早就接觸的幾何公理,然而在解析幾何,平面向量等理論中,直線或向量的方向是極其重要的要素,解析幾何中刻畫直線方向的量化形式就是斜率.因此,直線方程的兩點(diǎn)式和點(diǎn)斜式在直線方程的幾種形式中占有很重要的地位,而已知兩點(diǎn)可以求得斜率,所以點(diǎn)斜式又可推出兩點(diǎn)式(斜截式和截距式僅是它們的特例),因此點(diǎn)斜式最重要.教學(xué)中應(yīng)突出點(diǎn)斜式、兩點(diǎn)式和一般式三個(gè)教學(xué)高潮.
求直線方程需要兩個(gè)獨(dú)立的條件,要依不同的幾何條件選用不同形式的方程.根據(jù)兩個(gè)條件運(yùn)用待定系數(shù)法和方程思想求直線方程.
(5)注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),它是有向線段的數(shù)量,因而是一個(gè)實(shí)數(shù);距離是線段的長(zhǎng)度,是一個(gè)正實(shí)數(shù)(或非負(fù)實(shí)數(shù)).
(6)本節(jié)中有不少與函數(shù)、不等式、三角函數(shù)有關(guān)的問(wèn)題,是函數(shù)、不等式、三角與直線的重要知識(shí)交匯點(diǎn)之一,教學(xué)中要適當(dāng)選擇一些有關(guān)的問(wèn)題指導(dǎo)學(xué)生練習(xí),培養(yǎng)學(xué)生的綜合能力.
(7)直線方程的理論在其他學(xué)科和生產(chǎn)生活實(shí)際中有大量的應(yīng)用.教學(xué)中注意聯(lián)系實(shí)際和其它學(xué)科,教師要注意引導(dǎo),增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)和能力.
(8)本節(jié)不少內(nèi)容可安排學(xué)生自學(xué)和討論,還要適當(dāng)增加練習(xí),使學(xué)生能更好地掌握,而不是僅停留在觀念上.
高一數(shù)學(xué)的教學(xué)計(jì)劃2
一、高考要求
、倭私庥成涞母拍,理解函數(shù)的概念;
、诹私夂瘮(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡(jiǎn)單函數(shù)單調(diào)性奇偶性的方法;
、哿私夥春瘮(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會(huì)求一些簡(jiǎn)單函數(shù)的反函數(shù);
④理解分?jǐn)?shù)指數(shù)冪的概念,掌握有理數(shù)冪的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖像和性質(zhì);
、堇斫鈱(duì)數(shù)函數(shù)的概念、圖象和性質(zhì);⑥能夠應(yīng)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)性質(zhì)解決某些簡(jiǎn)單實(shí)際問(wèn)題.
二、兩點(diǎn)解讀
重點(diǎn):①求函數(shù)定義域;②求函數(shù)的值域或最值;③求函數(shù)表達(dá)式或函數(shù)值;④二次函數(shù)與二次方程、二次不等式相結(jié)合的有關(guān)問(wèn)題;⑤指數(shù)函數(shù)與對(duì)數(shù)函數(shù);⑥求反函數(shù);⑦利用原函數(shù)和反函數(shù)的定義域值域互換關(guān)系解題.
難點(diǎn):①抽象函數(shù)性質(zhì)的研究;②二次方程根的分布.
三、課前訓(xùn)練
1.函數(shù)的'定義域是 ( D )
(A) (B) (C) (D)
2.函數(shù)的反函數(shù)為 ( B )
(A) (B)
(C) (D)
3.設(shè)則 .
4.設(shè),函數(shù)是增函數(shù),則不等式的解集為 (2,3)
四、典型例題
例1 設(shè),則的定義域?yàn)?( )
(A) (B)
(C) (D)
解:∵在中,由,得, ∴,
∴在中,.
故選B
例2 已知是上的減函數(shù),那么a的取值范圍是 ( )
(A) (B) (C) (D)
解:∵是上的減函數(shù),當(dāng)時(shí),,∴;又當(dāng)時(shí),,∴,∴,且,解得:.∴綜上,,故選C
例3 函數(shù)對(duì)于任意實(shí)數(shù)滿足條件,若,則
解:∵函數(shù)對(duì)于任意實(shí)數(shù)滿足條件,
∴,即的周期為4,
高一數(shù)學(xué)的教學(xué)計(jì)劃3
教學(xué)分析
課本從學(xué)生熟悉的集合(自然數(shù)的集合、有理數(shù)的集合等)出發(fā),通過(guò)類比實(shí)數(shù)間的大小關(guān)系引入集合間的關(guān)系,同時(shí),結(jié)合相關(guān)內(nèi)容介紹子集等概念.在安排這部分內(nèi)容時(shí),課本注重體現(xiàn)邏輯思考的方法,如類比等.
值得注意的問(wèn)題:在集合間的關(guān)系教學(xué)中,建議重視使用Venn圖,這有助于學(xué)生通過(guò)體會(huì)直觀圖示來(lái)理解抽象概念;隨著學(xué)習(xí)的深入,集合符號(hào)越來(lái)越多,建議教學(xué)時(shí)引導(dǎo)學(xué)生區(qū)分一些容易混淆的關(guān)系和符號(hào),例如∈與?的區(qū)別.
三維目標(biāo)
1.理解集合之間包含與相等的含義,能識(shí)別給定集合的子集,能判斷給定集合間的關(guān)系,提高利用類比發(fā)現(xiàn)新結(jié)論的能力.
2.在具體情境中,了解空集的含義,掌握并能使用Venn圖表達(dá)集合的關(guān)系,加強(qiáng)學(xué)生從具體到抽象的思維能力,樹(shù)立數(shù)形結(jié)合的思想.
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):理解集合間包含與相等的含義.
教學(xué)難點(diǎn):理解空集的含義.
課時(shí)安排
1課時(shí)
教學(xué)過(guò)程
導(dǎo)入新課
思路1.實(shí)數(shù)有相等、大小關(guān)系,如5=5,5<7 5="">3等等,類比實(shí)數(shù)之間的關(guān)系,你會(huì)想到集合之間有什么關(guān)系呢?(讓學(xué)生自由發(fā)言,教師不要急于作出判斷,而是繼續(xù)引導(dǎo)學(xué)生)
(2)學(xué)生畫出y=2x和y=3x圖象,得出函數(shù)遞增速度的差異.
(3)畫出y=2x和y=0.5x圖象,得到底數(shù)互為倒數(shù)的指數(shù)函數(shù)圖象關(guān)于y軸對(duì)稱.)
師:(板書學(xué)生交流結(jié)果,整理成表格.注意區(qū)分“函數(shù)性質(zhì)”與“函數(shù)之間的關(guān)系”.若有學(xué)生試圖說(shuō)明結(jié)論的合理性,可提供機(jī)會(huì).)大家認(rèn)為底數(shù)a>1或0
[階段小結(jié)] 指數(shù)函數(shù)y=ax(a>0且a≠1)具有以下性質(zhì):
①定義域?yàn)镽.
、谥涤?yàn)?0, +∞).
③圖象過(guò)定點(diǎn)(0, 1).
、芊瞧娣桥己瘮(shù).
⑤當(dāng)a>1時(shí),函數(shù)y=ax在(-∞, +∞)上單調(diào)遞增;
當(dāng)0
、藓瘮(shù)y=ax與y=()x (a>0且a≠1)圖象關(guān)于y軸對(duì)稱.
、咧笖(shù)函數(shù)y=ax與y=bx(a>b)的圖象有如下關(guān)系:
x∈(-∞, 0)時(shí),y=ax圖象在y=bx圖象下方;
x=0時(shí),兩圖象相交;
x∈(0,+∞)時(shí),y=ax圖象在y=bx圖象上方.
[意圖分析]通過(guò)探究活動(dòng),使學(xué)生獲得對(duì)指數(shù)函數(shù)圖象的直觀認(rèn)識(shí).學(xué)生觀察圖象,是對(duì)圖形語(yǔ)言的理解;根據(jù)圖象描述性質(zhì),是將圖形語(yǔ)言轉(zhuǎn)化為符號(hào)或文字語(yǔ)言.對(duì)函數(shù)的理解,是建立在三種語(yǔ)言相互轉(zhuǎn)化的基礎(chǔ)上的.在交流匯報(bào)過(guò)程中,一方面要通過(guò)對(duì)探究較深入學(xué)生的具體研究過(guò)程的剖析,總結(jié)提升學(xué)習(xí)方法,優(yōu)化學(xué)習(xí)策略;另一方面要關(guān)注部分探究意識(shí)與能力都薄弱的學(xué)生的表現(xiàn),鼓勵(lì)他們大膽發(fā)言,激勵(lì)他們主動(dòng)參與活動(dòng),讓全體學(xué)生成為真正的學(xué)習(xí)主體.自主探究活動(dòng)能充分激發(fā)學(xué)生的相互學(xué)習(xí)能力,能有效幫助學(xué)生突破難點(diǎn).
3.新知運(yùn)用鞏固深化
(方案一)(分析函數(shù)性質(zhì)的用途)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:函數(shù)的定義域是函數(shù)的基礎(chǔ),是運(yùn)用性質(zhì)的前提.值域是研究函數(shù)最值的前提.具備奇偶性的函數(shù),可以利用對(duì)稱性簡(jiǎn)化研究.指數(shù)函數(shù)過(guò)定點(diǎn)(0, 1),說(shuō)明可以將常數(shù)1轉(zhuǎn)化為指數(shù)式,即1=20=30=…那么函數(shù)單調(diào)性有什么用呢?
生:可以求最值,可以比較兩個(gè)函數(shù)值的大小.
師:那你能舉出運(yùn)用指數(shù)函數(shù)單調(diào)性比大小的例子嗎?(提示:既然是運(yùn)用指數(shù)函數(shù)單調(diào)性,那應(yīng)該有指數(shù)式.)
生:(舉例并判斷大小.)
師:你考察了哪個(gè)指數(shù)函數(shù)?怎么想到的?(規(guī)范表述)
師:以往我們計(jì)算出冪的值來(lái)比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.(出示例1)
(方案二)
師:現(xiàn)在我們了解了指數(shù)函數(shù)的定義和性質(zhì),它們有什么用處呢?
師:(口述并板書)你能比較32與33的大小嗎?
生:直接計(jì)算比較.
師:那比較30.2與30.3的大小呢?能不能不計(jì)算呢?
生:利用函數(shù)y=3x的單調(diào)性.
師:能具體說(shuō)明嗎?(引導(dǎo)學(xué)生規(guī)范表達(dá))我們?cè)僭囈辉?
(出示例1)
【例1】比較下列各組數(shù)中兩個(gè)值的大。
、1.52.5,1.53.2;②0.5_1.2,0.5_1.5;③1.50.3,0.81.2.
[設(shè)計(jì)意圖] 引導(dǎo)學(xué)生運(yùn)用指數(shù)函數(shù)性質(zhì).對(duì)于 32與33的大小比較,學(xué)生更可能計(jì)算出冪的值直接比較.變式后,學(xué)生可能作差或作商比較,轉(zhuǎn)化為比較30.1與1的大小,進(jìn)而運(yùn)用指數(shù)函數(shù)單調(diào)性,也可能直接運(yùn)用單調(diào)性.初步運(yùn)用新知解決問(wèn)題,注重題意理解,擴(kuò)大知識(shí)遷移,感悟解題方法,達(dá)到對(duì)新知鞏固記憶,加深理解.
[師生活動(dòng)]學(xué)生板演,教師組織學(xué)生點(diǎn)評(píng).
[教學(xué)預(yù)設(shè)] ①②兩題,學(xué)生能運(yùn)用指數(shù)函數(shù)單調(diào)性解決.②題學(xué)生可能得到錯(cuò)誤答案,教師可組織相互點(diǎn)評(píng),規(guī)范表達(dá),正確運(yùn)用性質(zhì).③學(xué)生可能運(yùn)用不同方法,應(yīng)給予充分的時(shí)間,并在具體問(wèn)題解決后引導(dǎo)學(xué)生總結(jié)一般方法.
師:(引導(dǎo)學(xué)生規(guī)范表達(dá))你考察了哪個(gè)指數(shù)函數(shù)?根據(jù)函數(shù)的什么性質(zhì)?
師:(對(duì)③的引導(dǎo))你考慮利用哪個(gè)函數(shù)?是y=1.5x還是y=0.8x?這兩個(gè)函數(shù)有什么關(guān)聯(lián)?(引導(dǎo)學(xué)生畫出圖象,從形上提示:圖象有什么關(guān)聯(lián)?)
生:它們都過(guò)點(diǎn)(0, 1).
師:也就是說(shuō),可以將1轉(zhuǎn)化為指數(shù)形式,即1=1.50=0.80.那接下來(lái)呢?
生:比較1.50.3,0.81.2和1的大小.
師:我們找到了一個(gè)比大小的中間量.以往我們計(jì)算出冪的值來(lái)比大小,現(xiàn)在我們指數(shù)函數(shù)的單調(diào)性,不用計(jì)算就可以比較兩個(gè)冪的大小.
【例2】
①已知3x≥30.5,求實(shí)數(shù)x的取值范圍;
②已知0.2x<25,求實(shí)數(shù)x的取值范圍.
[設(shè)計(jì)意圖]指數(shù)函數(shù)單調(diào)性的逆用,同時(shí)考查指數(shù)函數(shù)的定義域.
4.概括知識(shí)總結(jié)方法
〖問(wèn)題4本節(jié)課我們學(xué)習(xí)了哪些知識(shí)?你還學(xué)會(huì)了哪些方法?
[設(shè)計(jì)意圖] 回顧所學(xué)內(nèi)容,深化認(rèn)知.開(kāi)放式小結(jié),不同學(xué)生有不同的收獲.
[師生活動(dòng)]學(xué)生發(fā)言總結(jié),交流所得.
[教學(xué)預(yù)設(shè)]
通過(guò)本節(jié)課對(duì)指數(shù)函數(shù)圖象和性質(zhì)的研究,我們獲得了以下知識(shí)和方法:
、僦笖(shù)函數(shù)的定義與性質(zhì);
、谘芯亢瘮(shù)的一般方法和步驟.
師:本節(jié)課我們學(xué)習(xí)了什么知識(shí)?
生:指數(shù)函數(shù)的定義和性質(zhì).
師:回顧我們的研究過(guò)程,我們是怎樣研究指數(shù)函數(shù)的?
生:先確定研究的內(nèi)容:定義域、值域、單調(diào)性、奇偶性和其它性質(zhì).
生:然后從幾個(gè)具體的指數(shù)函數(shù)開(kāi)始,畫出圖象,列出性質(zhì),最后得到一般情況.
師:這是一種從特殊到一般的研究方法.研究指數(shù)函數(shù)的方法,也是研究函數(shù)的一般方法,今后我們還會(huì)運(yùn)用這樣的方法研究新的函數(shù).
[意圖分析]課堂總結(jié)不是對(duì)所學(xué)知識(shí)的簡(jiǎn)單回顧,應(yīng)讓學(xué)生在知識(shí)、方法和策略上多層次地整理,促進(jìn)學(xué)生理解所用學(xué)習(xí)方法的合理性與普遍性,使學(xué)生獲得知識(shí)與能力的共同進(jìn)步.
5.分層作業(yè),因材施教
(1)感受理解:課本第54頁(yè),習(xí)題2.2(2):1,2,3,4;
(2)思考運(yùn)用:運(yùn)用今天的研究方法,你還能得到指數(shù)函數(shù)的其它性質(zhì)嗎?
[設(shè)計(jì)意圖]分層布置作業(yè),“感受理解”面向全體學(xué)生,旨在掌握指數(shù)函數(shù)的圖象與性質(zhì).“思考運(yùn)用”提供學(xué)生運(yùn)用函數(shù)研究的一般方法自主研究的機(jī)會(huì).
、觯毯蠓此蓟仡
一、對(duì)于指數(shù)函數(shù)概念的認(rèn)識(shí)
指數(shù)函數(shù)是一種函數(shù)模型,其基本特征是自變量在指數(shù)位置.底數(shù)取值范圍有規(guī)定,使得這一模型形式簡(jiǎn)單又不失本質(zhì).不必糾結(jié)于“y=22x是否為指數(shù)函數(shù)”,把重點(diǎn)放在概念的合理性的理解以及體會(huì)模型思想.
二、對(duì)于培養(yǎng)學(xué)生思維習(xí)慣的考慮
在學(xué)生自主探索的過(guò)程中,教師應(yīng)注意培養(yǎng)學(xué)生良好的思維習(xí)慣.實(shí)際上,選擇底數(shù)a的數(shù)據(jù)的大小和數(shù)量,需要對(duì)指數(shù)函數(shù)的性質(zhì)有預(yù)判;從列表到作圖的過(guò)程中,都可以感受到指數(shù)函數(shù)單調(diào)性等性質(zhì);觀察并歸納性質(zhì),既需要特殊到一般的推理模式,也應(yīng)養(yǎng)成有序進(jìn)行觀察和歸納的良好的思維習(xí)慣.對(duì)所歸納的指數(shù)函數(shù)的性質(zhì),應(yīng)根據(jù)學(xué)生已有的知識(shí)水平或教學(xué)要求進(jìn)行證明或合理的說(shuō)明.學(xué)生不僅學(xué)到了數(shù)學(xué)知識(shí),也初步體驗(yàn)了研究問(wèn)題的基本方法.
三、關(guān)于設(shè)計(jì)定位的反思
本節(jié)課的教學(xué)設(shè)計(jì),力圖體現(xiàn)因材施教原則。不同的學(xué)情下,教師應(yīng)采用不同的教學(xué)策略.如果學(xué)生基礎(chǔ)相對(duì)薄弱,問(wèn)題的提出可以分層次進(jìn)行。另外,注意通過(guò)“你是怎么想的?”“你同意他的意見(jiàn)嗎?為什么”等問(wèn)話形式,促使學(xué)生暴露思維過(guò)程.、
【高一數(shù)學(xué)的教學(xué)計(jì)劃】相關(guān)文章:
高一數(shù)學(xué)教學(xué)計(jì)劃09-21
高一數(shù)學(xué)教學(xué)計(jì)劃09-18
高一數(shù)學(xué)的教學(xué)計(jì)劃15篇06-20
高一數(shù)學(xué)教學(xué)計(jì)劃精選15篇10-27
高一數(shù)學(xué)教學(xué)計(jì)劃14篇06-10
高一上數(shù)學(xué)教學(xué)計(jì)劃11-02
數(shù)學(xué)高一上教學(xué)計(jì)劃09-01