高一數(shù)學教學工作計劃模板匯編7篇
時間過得可真快,從來都不等人,很快就要開展新的工作了,現(xiàn)在就讓我們制定一份計劃,好好地規(guī)劃一下吧。那么計劃怎么擬定才能發(fā)揮它最大的作用呢?下面是小編幫大家整理的高一數(shù)學教學工作計劃7篇,歡迎大家分享。
高一數(shù)學教學工作計劃 篇1
一、高考要求
、倭私庥成涞母拍睿斫夂瘮(shù)的概念;
、诹私夂瘮(shù)的單調性和奇偶性的概念,掌握判斷一些簡單函數(shù)單調性奇偶性的方法;
、哿私夥春瘮(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關系,會求一些簡單函數(shù)的反函數(shù);
、芾斫夥謹(shù)指數(shù)冪的概念,掌握有理數(shù)冪的`運算性質,掌握指數(shù)函數(shù)的概念、圖像和性質;
、堇斫鈱(shù)函數(shù)的概念、圖象和性質;⑥能夠應用函數(shù)的性質、指數(shù)函數(shù)和對數(shù)函數(shù)性質解決某些簡單實際問題.
二、兩點解讀
重點:①求函數(shù)定義域;②求函數(shù)的值域或最值;③求函數(shù)表達式或函數(shù)值;④二次函數(shù)與二次方程、二次不等式相結合的有關問題;⑤指數(shù)函數(shù)與對數(shù)函數(shù);⑥求反函數(shù);⑦利用原函數(shù)和反函數(shù)的定義域值域互換關系解題.
難點:①抽象函數(shù)性質的研究;②二次方程根的分布.
三、課前訓練
1.函數(shù)的定義域是 ( D )
(A) (B) (C) (D)
2.函數(shù)的反函數(shù)為 ( B )
(A) (B)
(C) (D)
3.設則 .
4.設,函數(shù)是增函數(shù),則不等式的解集為 (2,3)
四、典型例題
例1 設,則的定義域為 ( )
(A) (B)
(C) (D)
解:∵在中,由,得, ∴,
∴在中,.
故選B
例2 已知是上的減函數(shù),那么a的取值范圍是 ( )
(A) (B) (C) (D)
解:∵是上的減函數(shù),當時,,∴;又當時,,∴,∴,且,解得:.∴綜上,,故選C
例3 函數(shù)對于任意實數(shù)滿足條件,若,則
解:∵函數(shù)對于任意實數(shù)滿足條件,
∴,即的周期為4,
高一數(shù)學教學工作計劃 篇2
教學計劃可以幫助教師理清教學思路,提高課堂效率。
●教學目標
(一)教學知識點
1.了解全集的意義.
2.理解補集的概念.
(二)能力訓練要求
1.通過概念教學,提高學生邏輯思維能力.
2.通過教學,提高學生分析、解決問題能力.
(三)德育滲透目標 滲透相對的觀點.
●教學重點 補集的概念.
●教學難點
補集的有關運算.
●教學方法 發(fā)現(xiàn)式教學法 通過引入實例,進而對實例的分析,發(fā)現(xiàn)尋找其一般結果,歸納其普遍規(guī)律.
●教具準備
第一張:(記作1.2.2 A)
●教學過程 Ⅰ.復習回顧
1.集合的子集、真子集如何尋求?其個數(shù)分別是多少? 2.兩個集合相等應滿足的.條件是什么?
、.講授新課 [師]事物都是相對的,集合中的部分元素與集合之間關系就是部分與整體的關系.
請同學們由下面的例子回答問題: 投影片:(1.2.2 A)
[生]集合B就是集合S中除去集合A之后余下來的集合. 即為如圖陰影部分
由此借助上圖總結規(guī)律如下: 投影片:(1.2.2 B)
、.課時小結
1.能熟練求解一個給定集合的補集.
2.注意一些特殊結論在以后解題中的應用. Ⅴ.課后作業(yè)
高一數(shù)學教學工作計劃 篇3
一、 指導思想
使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展和社會進步的需要。具體目標如下:
1.突出數(shù)學基礎知識、基本技能、基本思想方法的培養(yǎng)
對數(shù)學基礎知識和基本技能的培養(yǎng),要貼近教學實際,既注意全面,又突出重點,注重知識內在聯(lián)系以及中學數(shù)學中所蘊涵的數(shù)學思想方法的培養(yǎng)。
2.重視數(shù)學基本能力的培養(yǎng)
數(shù)學基本能力主要包括空間想象、抽象概括、推理論證、運算求解、數(shù)據處理這幾方面的能力。根據高一上學期的內容,側重以下幾個方面:
。1)運算求解能力是思維能力和運算技能的結合,主要包括數(shù)的計算、估算和近似計算,式子的組合變形與分解變形,以及能夠針對問題探究運算方向、選擇運算公式、確定運算程序等。
(2)抽象概括能力的培養(yǎng)要求是:能夠通過對實例的探究發(fā)現(xiàn)研究對象的本質;能夠從給定的信息材料中概括出一些結論,并用于解決問題或做出新的判斷。
。3)推理論證能力的培養(yǎng)要求是:能夠根據已知的事實和已經獲得的正確的數(shù)學命題,運用演繹推理,論證某一數(shù)學命題的真假性。
(4)數(shù)據處理能力是指會收集、整理、分析數(shù)據,能夠從大量數(shù)據中提取對研究問題有用的信息并做出判斷,以解決給定的實際問題。
3.注重數(shù)學的`應用意識和創(chuàng)新意識的培養(yǎng)
培養(yǎng)數(shù)學的應用意識,要求能夠運用所學的數(shù)學知識、思想和方法,構造數(shù)學模型,將一些簡單的實際問題轉化為數(shù)學問題,并加以解決。培養(yǎng)學生的創(chuàng)新意識,鼓勵學生創(chuàng)造性地解決問題。
4.提高學生學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。逐步認識數(shù)學的科學價值、應用價值和文化價值,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,形成批判性的思維習慣,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、 教材特點
高一上使用的是人教版《必修1》和《必修4》,這套教材在堅持我國數(shù)學教育優(yōu)良傳統(tǒng)的前提下,認真處理繼承、借鑒、發(fā)展、創(chuàng)新的關系,體現(xiàn)了基礎性、時代性、典型性和可接受性等,具有如下特點:
1. 親和力:以生動活潑的呈現(xiàn)方式,激發(fā)學習興趣和美感,每章配有優(yōu)美的章頭圖和詩一般的引言和富有哲理的數(shù)學家名言。
2. 問題性:每節(jié)圍繞問題展開,設置問題情景,培養(yǎng)問題意識,以問題為切入點,形成問題鏈,來組織課堂教學
3. 思想性和應用性:通過不同數(shù)學內容的聯(lián)系和啟發(fā),強調類比、推廣、化歸和特殊化等思想方法的運用,學習數(shù)學地思考問題的方式,提高數(shù)學思維能力,培養(yǎng)理性精神;取材具有時代感、現(xiàn)實感,加強數(shù)學活動,發(fā)展應用意識。
4. 可操作性:教材編寫體例就是以一堂課的全過程展開,易于學生自學、教師編寫教案,大致一節(jié)內容占三頁。
三、 學情分析
基本狀況:本年級共14個行政班級,其中2個實驗班,12個普通班。學生數(shù)共840人,由于初高中分別進行了課改,高中教材與初中教材銜接度遠遠不夠,需在新授的同時適時補充一些內容,因此時間上略緊。同時,因其底子薄弱,教學時必須注重基礎,夯實每個知識點。
四、 教學措施
1.加強自我學習,特別是兩個綱領性文件——《普通高中數(shù)學課程標準》,《普通高中數(shù)學考試大綱》,準確把握教學要求,提高教學效率,不做無用功;
2.加強集體備課,發(fā)動全組同志,確定階段主講人,集思廣益,討論優(yōu)化教學方案;平行班級統(tǒng)一進度,統(tǒng)一要求,統(tǒng)一作業(yè),統(tǒng)一考試;
3.認真貫徹教學六認真的要求,精心組織教學,保護學生學習數(shù)學的積極性,重視數(shù)學學習能力培養(yǎng);
4.加強銜接教學,適量打破模塊式教學,使學生得到和諧的發(fā)展。
五、 教學進度
高一數(shù)學教學工作計劃 篇4
一 設計思想:
函數(shù)與方程是中學數(shù)學的重要內容,是銜接初等數(shù)學與高等數(shù)學的紐帶,再加上函數(shù)與方程還是中學數(shù)學四大數(shù)學思想之一,是具體事例與抽象思想相結合的體現(xiàn),在教學過程中,我采用了自主探究教學法。通過教學情境的設置,讓學生由特殊到一般,有熟悉到陌生,讓學生從現(xiàn)象中發(fā)現(xiàn)本質,以此激發(fā)學生的成就感,激發(fā)學生的學習興趣和學習熱情。在現(xiàn)實生活中函數(shù)與方程都有著十分重要的應用,因此函數(shù)與方程在整個高中數(shù)學教學中占有非常重要的地位。
二 教學內容分析:
本節(jié)課是《普通高中課程標準》的新增內容之一,選自《普通高中課程標準實驗教課書數(shù)學I必修本(A版)》第94-95頁的第三章第一課時3.1.1方程的根與函數(shù)的的零點。
本節(jié)通過對二次函數(shù)的圖象的研究判斷一元二次方程根的存在性以及根的個數(shù)的判斷建立一元二次方程的根與相應的二次函數(shù)的零點的聯(lián)系,然后由特殊到一般,將其推廣到一般方程與相應的函數(shù)的情形.它既揭示了初中一元二次方程與相應的二次函數(shù)的內在聯(lián)系,也引出對函數(shù)知識的總結拓展。之后將函數(shù)零點與方程的根的關系在利用二分法解方程中(3.1.2)加以應用,通過建立函數(shù)模型以及模型的求解(3.2)更全面地體現(xiàn)函數(shù)與方程的關系,逐步建立起函數(shù)與方程的聯(lián)系.滲透“方程與函數(shù)”思想。
總之,本節(jié)課滲透著重要的數(shù)學思想“特殊到一般的歸納思想”“方程與函數(shù)”和“數(shù)形結合”的思想,教好本節(jié)課可以為學好中學數(shù)學打下一個良好基礎,因此教好本節(jié)是至關重要的。
三 教學目標分析:
知識與技能:
1.結合方程根的幾何意義,理解函數(shù)零點的定義;
2.結合零點定義的探究,掌握方程的實根與其相應函數(shù)零點之間的等價關系;
3.結合幾類基本初等函數(shù)的.圖象特征,掌握判斷函數(shù)的零點個數(shù)和所在區(qū)間 的方法
情感、態(tài)度與價值觀:
1.讓學生體驗化歸與轉化、數(shù)形結合、函數(shù)與方程這三大數(shù)學思想在解決數(shù)學問題時的意義與價值;
2.培養(yǎng)學生鍥而不舍的探索精神和嚴密思考的良好學習習慣;
3.使學生感受學習、探索發(fā)現(xiàn)的樂趣與成功感
教學重點:函數(shù)零點與方程根之間的關系;連續(xù)函數(shù)在某區(qū)間上存在零點的判定方法。
教學難點:發(fā)現(xiàn)與理解方程的根與函數(shù)零點的關系;探究發(fā)現(xiàn)函數(shù)存在零點的方法。
四 教學準備
導學案,自主探究,合作學習,電子交互白板。
五 教學過程設計:
。ㄒ唬栴}引人:
請同學們思考這個問題。用屏幕顯示判斷下列方程是否有實根,有幾個實根?
(1)
;(2)
?
學生活動:回答,思考解法。
教師活動:第二個方程我們不會解怎么辦?你是如何思考的?有什么想法?我們可以考慮將復雜問題簡單化,將未知問題已知化,通過對第一個問題的研究,進而來解決第二個問題。對于第一個問題大家都習慣性地用代數(shù)的方法去解決,我們應該打破思維定勢,走出自己給自己畫定的牢籠!這樣我們先把所依賴的拐杖丟掉,假如第一個方程你不會解,也不會應用判別式,你要怎樣判斷其實根個數(shù)呢?
學生活動:思考作答。
設計意圖:通過設疑,讓學生對高次方程的根產生好奇。
(二)、概念形成:
預習展示1:
你能通過觀察二次方程的根及相應的二次函數(shù)圖象,找出方程的根,圖象與軸交點的坐標以及函數(shù)零點的關系嗎?
學生活動:觀察圖像,思考作答。
教師活動:我們來認真地對比一下。用投影展示學生填寫表格
一元二次方程 | 方程的根 | 二次函數(shù) | 函數(shù)的圖象 (簡圖) | 圖象與軸交點的坐標 | 函數(shù)的零點 |
? | ? | ? | ? | ||
? | ? | ? | ? | ||
? | ? | ? | ? |
問題1:你能通過觀察二次方程的根及相應的二次函數(shù)圖象,找出方程的根,圖象與
軸交點的坐標以及函數(shù)零點的關系嗎?
學生活動:得到方程的實數(shù)根應該是函數(shù)圖象與x軸交點的橫坐標的結論。
教師活動:我們就把使方程 成立的實數(shù)x稱做函數(shù)的零點.(引出零點的概念)
根據零點概念,提出問題,零點是點嗎?零點與函數(shù)方程的根有何關系?
學生活動:經過觀察表格,得出(請學生總結)
1)概念:函數(shù)的零點并不是“點”,它不是以坐標的形式出現(xiàn),而是實數(shù)。例如函數(shù)的零點為x=-1,3
2)函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.
3)方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點。
教師活動:引導學生仔細體會上述結論。
再提出問題:如何并根據函數(shù)零點的意義求零點?
學生活動:可以解方程而得到(代數(shù)法);
可以利用函數(shù)的圖象找出零點.(幾何法).
設計意圖:由學生最熟悉的二次方程和二次函數(shù)出發(fā),發(fā)現(xiàn)一般規(guī)律,并嘗試的去總結零點,根與交點三者的關系。
(三)、探究性質:
。ㄎ澹、探索研究(可根據時間和學生對知識的接受程度適當調整)
討論:請大家給方程的一個解的大約范圍,看誰找得范圍更小?
[師生互動]
師:把學生分成小組共同探究,給學生足夠的自主學習時間,讓學生充分研究,發(fā)揮其主觀能動性。也可以讓各組把這幾個題做為小課題來研究,激發(fā)學生學習潛能和熱情。老師用多媒體演示,直觀地演示根的存在性及根存在的區(qū)間大小情況。
生:分組討論,各抒己見。在探究學習中得到數(shù)學能力的提高
第五階段設計意圖:
一是為用二分法求方程的近似解做準備
二是小組探究合作學習培養(yǎng)學生的創(chuàng)新能力和探究意識,本組探究題目就是為了培養(yǎng)學生的探究能力,此組題目具有較強的開放性,探究性,基本上可以達到上述目的。
。、課堂小結:
零點概念
零點存在性的判斷
零點存在性定理的應用注意點:零點個數(shù)判斷以及方程根所在區(qū)間
。ㄆ撸、鞏固練習(略)
高一數(shù)學教學工作計劃 篇5
一、學情分析
這節(jié)課是在學生已經學過的二維的平面直角坐標系的基礎上的推廣,是以后學習空間向量等內容的基礎。
二、教學目標
1. 讓學生經歷用類比的數(shù)學思想方法探索空間直角坐標系的建立方法,進一步體會數(shù)學概念、方法產生和發(fā)展的過程,學會科學的思維方法。
2. 理解空間直角坐標系與點的坐標的意義,掌握由空間直角坐標系內的點確定其坐標或由坐標確定其在空間直角坐標系內的點,認識空間直角坐標系中的點與坐標的關系。
3. 進一步培養(yǎng)學生的空間想象能力與確定性思維能力。
三、教學重點:在空間直角坐標系中點的坐標的確定。
四、教學難點:通過建立空間直角坐標系利用點的坐標來確定點在空間內的位置
五、教學過程
(一)、問題情景
1. 確定一個點在一條直線上的位置的方法。
2. 確定一個點在一個平面內的位置的方法。
3. 如何確定一個點在三維空間內的位置?
例:如圖,在房間(立體空間)內如何確定一個同學的頭所在位置?
在學生思考討論的基礎上,教師明確:確定點在直線上,通過數(shù)軸需要一個數(shù);確定點在平面內,通過平面直角坐標系需要兩個數(shù)。那么,要確定點在空間內,應該需要幾個數(shù)呢?通過類比聯(lián)想,容易知道需要三個數(shù)。要確定同學的頭的位置,知道同學的頭到地面的距離、到相鄰的兩個墻面的距離即可。
(此時學生只是意識到需要三個數(shù),還不能從坐標的角度去思考,因此,教師在這兒要重點引導)
教師明晰:在地面上建立直角坐標系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內的電燈的位置,須要用第三個數(shù)表示物體離地面的高度,即需第三個坐標z.因此,只要知道電燈到地面的距離、到相鄰的兩個墻面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個坐標分別為4和5,到地面的距離為3,則可以用有序數(shù)組(4,5,3)確定這個電燈的位置(如圖26-3)。
這樣,仿照初中平面直角坐標系,就建立了空間直角坐標系O-xyz,從而確定了空間點的位置。
(二)、建立模型
1. 在前面研究的'基礎上,先由學生對空間直角坐標系予以抽象概括,然后由教師給出準確的定義。
從空間某一個定點O引三條互相垂直且有相同單位長度的數(shù)軸,這樣就建立了空間直角坐標系O-xyz,點O叫作坐標原點,x軸、y軸、z軸叫作坐標軸,這三條坐標軸中每兩條確定一個坐標平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進一步明確:
(1)在空間直角坐標系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個坐標系為右手坐標系,課本中建立的坐標系都是右手坐標系。
(2)將空間直角坐標系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直于z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等于y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角坐標系O-xyz中點的坐標。
思考:在空間直角坐標系中,空間任意一點A與有序數(shù)組(x,y,z)有什么樣的對應關系?
在學生充分討論思考之后,教師明確:
(1)過點A作三個平面分別垂直于x軸,y軸,z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數(shù)軸上的坐標依次為x,y,z,這樣,對空間任意點A,就定義了一個有序數(shù)組(x,y,z)。
(2)反之,對任意一個有序數(shù)組(x,y,z),按照剛才作圖的相反順序,在坐標軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的坐標分別是x,y,z,再分別過這些點作垂直于各自所在的坐標軸的平面,這三個平面的交點就是所求的點A.
這樣,在空間直角坐標系中,空間任意一點A與有序數(shù)組(x,y,z)之間就建立了一種一一對應關系:A (x,y,z)。
教師進一步指出:空間直角坐標系O-xyz中任意點A的坐標的概念
對于空間任意點A,作點A在三條坐標軸上的射影,即經過點A作三個平面分別垂直于x軸、y軸和z軸,它們與x軸、y軸、z軸分別交于點P,Q,R,點P,Q,R在相應數(shù)軸上的坐標依次為x,y,z,我們把有序數(shù)組(x,y,z)叫作點A的坐標,記為A(x,y,z)。
(三)、例 題 與 練 習
1. 課本135頁例1.
注意:在分析中緊扣坐標定義,強調三個步驟,第一步從原點出發(fā)沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角坐標系中,坐標平面xOy,xOz,yOz上點的坐標有什么特點?
(2)在空間直角坐標系中,x軸、y軸、z軸上點的坐標有什么特點?
解:(1)xOy平面、xOz平面、yOz平面內的點的坐標分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點的坐標分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為坐標原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。
注意:此題可以由學生口答,教師點評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角坐標系,那么各頂點的坐標又是怎樣的呢?
得出結論:建立不同的坐標系,所得的同一點的坐標也不同。
[練 習]
1. 在空間直角坐標系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為坐標原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角坐標系,求這個長方體各個頂點的坐標。
3. 寫出坐標平面yOz上yOz平分線上的點的坐標滿足的條件。
(四)、拓展延伸
分別寫出點(1,1,1)關于各坐標軸和各個坐標平面對稱的點的坐標。
六、評價設計
1、 練習 : 課本P136. 1、2、3
2、 課堂作業(yè): 課本P138. 1、2
高一數(shù)學教學工作計劃 篇6
本學期擔任高一(9)(10)兩班的數(shù)學教學工作,兩班學生共有120人,初中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、指導思想:
使學生在九年義務教育數(shù)學課程的基礎上,進一步提高作為未來公民所必要的數(shù)學素養(yǎng),以滿足個人發(fā)展與社會進步的需要。具體目標如下。
1.獲得必要的數(shù)學基礎知識和基本技能,理解基本的數(shù)學概念、數(shù)學結論的本質,了解概念、結論等產生的背景、應用,體會其中所蘊涵的數(shù)學思想和方法,以及它們在后續(xù)學習中的作用。通過不同形式的自主學習、探究活動,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、數(shù)據處理等基本能力。
3.提高數(shù)學地提出、分析和解決問題(包括簡單的實際問題)的能力,數(shù)學表達和交流的能力,發(fā)展獨立獲取數(shù)學知識的能力。
4.發(fā)展數(shù)學應用意識和創(chuàng)新意識,力求對現(xiàn)實世界中蘊涵的.一些數(shù)學模式進行思考和作出判斷。
5.提高學習數(shù)學的興趣,樹立學好數(shù)學的信心,形成鍥而不舍的鉆研精神和科學態(tài)度。
6.具有一定的數(shù)學視野,逐步認識數(shù)學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數(shù)學的理性精神,體會數(shù)學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學目標.
(一)情意目標
(1)通過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。
(2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。(3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質,體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基于情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。
(6)讓學生體驗“發(fā)現(xiàn)——挫折——矛盾——頓悟——新的發(fā)現(xiàn)”這一科學發(fā)現(xiàn)歷程法。
(二)能力要求培養(yǎng)學生記憶能力。
(1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數(shù)學本質問題的背景事實及具體數(shù)據的記憶。
(3)通過揭示立體集合、函數(shù)、數(shù)列有關概念、公式和圖形的對應關系,培養(yǎng)記憶能力。
2、培養(yǎng)學生的運算能力。
(1)通過概率的訓練,培養(yǎng)學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。
(3)通過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。
(4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數(shù)形結合,另辟蹊徑,提高學生運算能力。
三、學生在數(shù)學學習上存在的主要問題
我校高一學生在數(shù)學學習上存在不少問題,這些問題主要表現(xiàn)在以下方面:
1、進一步學習條件不具備.高中數(shù)學與初中數(shù)學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數(shù)學很多地方難度大、方法新、分析能力要求高.如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節(jié)內容,如不采取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現(xiàn)在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數(shù)學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
高一數(shù)學教學工作計劃 篇7
教材教法分析
本節(jié)課是蘇教版普通高中課程標準實驗教科書數(shù)學必修(2)第2章第三節(jié)的第一節(jié)課。該課是在二維平面直角坐標系基礎上的推廣,是空間立體幾何的代數(shù)化。教材通過一個實際問題的分析和解決,讓學生感受建立空間直角坐標系的必要性,內容由淺入深、環(huán)環(huán)相扣,體現(xiàn)了知識的發(fā)生、發(fā)展的過程,能夠很好的誘導學生積極地參與到知識的探究過程中。同時,通過對《空間直角坐標系》的學習和掌握將對今后學習本節(jié)內容《空間兩點間的距離》和選修2—1內容《空間中的向量與立體幾何》有著鋪墊作用。由此,本課打算通過師生之間的合作、交流、討論,利用類比建立起空間直角坐標系。
學情分析
一方面學生通過對空間幾何體:柱、錐、臺、球的學習,處理了空間中點、線、面的關系,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力。另一方面學生剛剛學習了解析幾何的基礎內容:直線和圓,對建立平面直角坐標系,根據坐標利用代數(shù)的'方法處理問題有了一定的認識,因此也建立了一定的轉化和數(shù)形結合的思想。這兩方面都為學習本課內容打下了基礎。
教學目標
1、知識與技能
①通過具體情境,使學生感受建立空間直角坐標系的必要性
②了解空間直角坐標系,掌握空間點的坐標的確定方法和過程
③感受類比思想在探究新知識過程中的作用
2、過程與方法
、俳Y合具體問題引入,誘導學生探究
、陬惐葘W習,循序漸進
3、情感態(tài)度與價值觀
通過用類比的數(shù)學思想方法探究新知識,使學生感受新舊知識的聯(lián)系和研究事物從低維到高維的一般方法。通過實際問題的引入和解決,讓學生體會數(shù)學的實踐性和應用性,感受數(shù)學刻畫生活的作用,不斷地拓展自己的思維空間。
教學重點
本課是本節(jié)第一節(jié)課,關鍵是空間直角坐標系的建立,對今后相關內容的學習有著直接的影響作用,所以本課教學重點確立為“空間直角坐標系的理解”。
教學難點
“通過建立恰當?shù)目臻g直角坐標系,確定空間點的坐標”。
先通過具體問題回顧平面直角坐標系,使學生體會用坐標刻畫平面內任意點的位置的方法,進而設置具體問題情境促發(fā)利用舊知解決問題的局限性,從而尋求新知,根據已有一定空間思維,所以能較容易得出“第三根軸”的建立,進而感受逐步發(fā)展得到“空間直角坐標系”的建立,再逐步掌握利用坐標表示空間任意點的位置?偟脕碚f,關鍵是具體問題情境的設立,不斷地讓學生感受,交流,討論。
【高一數(shù)學教學工作計劃】相關文章:
高一數(shù)學教學工作計劃06-03
高一數(shù)學教學工作計劃06-09
高一數(shù)學教學總結09-17
高一數(shù)學教學經典設計08-04
高一數(shù)學教學反思10-21
高一數(shù)學的教學總結09-03
高一數(shù)學教學總結08-09
高一數(shù)學教學計劃07-16
高一數(shù)學教學總結范本06-26
高一數(shù)學教學總結優(yōu)秀08-07