亚欧洲精品在线观看,窝窝影院午夜看片,久久国产成人午夜av影院宅,午夜91,免费国产人成网站,ts在线视频,欧美激情在线一区

數(shù)學(xué) 百文網(wǎng)手機站

八年級上冊數(shù)學(xué)第二章知識點歸納

時間:2022-07-19 10:12:09 數(shù)學(xué) 我要投稿

八年級上冊人教版數(shù)學(xué)第二章知識點歸納

  漫長的學(xué)習(xí)生涯中,大家最熟悉的就是知識點吧?知識點就是“讓別人看完能理解”或者“通過練習(xí)我能掌握”的內(nèi)容。相信很多人都在為知識點發(fā)愁,下面是小編為大家收集的八年級上冊人教版數(shù)學(xué)第二章知識點歸納,歡迎大家借鑒與參考,希望對大家有所幫助。

八年級上冊人教版數(shù)學(xué)第二章知識點歸納

  八年級上冊數(shù)學(xué)第二章知識點歸納1

  一、定義

  1、如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。我們也說這個圖形關(guān)于這條直線[成軸]對稱。

  2、把一個圖形沿著某一條直線折疊,如果它能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線對稱。這條直線叫做對稱軸,折疊后重合的點是對應(yīng)點,叫做對應(yīng)點。

  3、經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線。如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是任何一對對應(yīng)點所連線段的垂直平分線。軸對稱圖形的對稱軸,是任何一對對應(yīng)點所連線段的垂直平分線。

  4、有兩邊相等的三角形叫做等腰三角形。

  5、三條邊都相等的三角形叫做等邊三角形。

  二、重點

  1、把成軸對稱的兩個圖形看成一個整體,它就是一個軸對稱圖形。

  2、把一個軸對稱圖形沿對稱軸分成兩個圖形,這兩個圖形關(guān)于這條軸對稱。

  3、垂直平分線的性質(zhì):線段垂直平分線上的點與這條線段兩個端點的距離相等。

  4、垂直平分線的判定:與一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。

  5、如何做對稱軸:如果兩個圖形成軸對稱,其對稱軸就是任何一對對應(yīng)點所連線段的垂直平分線。因此,我們只要找到一對再對應(yīng)點,作出連接它們的線段的垂直平分線就可以得到這個圖形的對稱軸。同樣,對于軸對稱圖形,只要找到任意一組對應(yīng)點所連線段的垂直平分線,就得到此圖形的對稱軸。

  6、軸對稱圖形的性質(zhì):對稱軸方向和位置發(fā)生變化時,得到的圖形的方向和位置也會發(fā)生變化。由個平面圖形可以得到它關(guān)于一條直線成軸對稱的圖形,這個圖形與原圖形的形狀,大小完全相等。新圖形上的每一點,都是原圖形上的某一點關(guān)于直線的對稱點。連接任意一對對應(yīng)點的線段被對稱軸垂直平分。

  7、等腰三角形的性質(zhì):等腰三角形的兩個底角相等[等邊對等角]等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合[三線合一][等腰三角形是軸對稱圖形,底邊上的中線(,底邊上的高,頂角平分線)所在直線就是它的對稱軸。

  等腰三角形兩腰上的高或中線相等。

  等腰三角形兩底角平分線相等。

  等腰三角形底邊上高的點到兩腰的距離之和等于底角到一腰的距離。

  等腰三角形頂角平分線,底邊上的高,底邊上的中線到兩腰的距離相等。]

  8、等腰三角形的判定方法:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等[等角對等邊]。

  [如果三角形一個外角的平分線平行于三角形的一邊,那么這個三角形是等腰三角形。]

  9、等邊三角形的性質(zhì):等邊三角形的三個內(nèi)角都相等,并且每一個角都等于60°。

  10、等邊三角形的判定:等邊三角形的三個內(nèi)角都相等,并且每一個角都等于60°。三個角都相等的三角形是等邊三角形。有一個角是60°的等腰三角形是等邊三角形。

  11、直角三角形的性質(zhì)之一:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半。

  12、在一個三角形中,如果兩條邊不等,那么它們所對的角也不等,大邊所對的角較大。

  三、注意

  1、(x,y)關(guān)于原點對稱(-x。-y)。關(guān)于x軸對稱(x,-y)。關(guān)于y軸對稱(-x,y)

  2、用坐標(biāo)表示軸對稱。

  八年級上冊數(shù)學(xué)第二章知識點歸納2

  一、實數(shù)的概念及分類

  1、實數(shù)的分類

  一是分類是:正數(shù)、負數(shù)、0;

  另一種分類是:有理數(shù)、無理數(shù)

  將兩種分類進行組合:負有理數(shù),負無理數(shù),0,正有理數(shù),正無理數(shù)

  2、無理數(shù):無限不循環(huán)小數(shù)叫做無理數(shù)。

  在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

  (1)開方開不盡的數(shù),如等;

  (2)有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如+8等;

  (3)有特定結(jié)構(gòu)的數(shù),如0.1010010001等;

  (4)某些三角函數(shù)值,如sin60o等

  二、實數(shù)的倒數(shù)、相反數(shù)和絕對值

  1、相反數(shù)

  實數(shù)與它的相反數(shù)時一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=—b,反之亦成立。

  2、絕對值

  在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

  3、倒數(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。零沒有倒數(shù)。

  4、數(shù)軸

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。

  八年級上冊數(shù)學(xué)第二章知識點歸納3

  1全等三角形的對應(yīng)邊、對應(yīng)角相等

  2邊角邊公理(SAS)有兩邊和它們的夾角對應(yīng)相等的兩個三角形全等

  3角邊角公理(ASA)有兩角和它們的夾邊對應(yīng)相等的兩個三角形全等

  4推論(AAS)有兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等

  5邊邊邊公理(SSS)有三邊對應(yīng)相等的兩個三角形全等

  6斜邊、直角邊公理(HL)有斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等

  7定理1在角的平分線上的點到這個角的兩邊的距離相等

  8定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

  9角的平分線是到角的兩邊距離相等的所有點的集合

  10等腰三角形的性質(zhì)定理等腰三角形的兩個底角相等(即等邊對等角)

  21推論1等腰三角形頂角的'平分線平分底邊并且垂直于底邊

  22等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

  23推論3等邊三角形的各角都相等,并且每一個角都等于60°

  24等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

  25推論1三個角都相等的三角形是等邊三角形

  26推論2有一個角等于60°的等腰三角形是等邊三角形

  27在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

  28直角三角形斜邊上的中線等于斜邊上的一半

  29定理線段垂直平分線上的點和這條線段兩個端點的距離相等

  30逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

  31線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

  32定理1關(guān)于某條直線對稱的兩個圖形是全等形

  33定理2如果兩個圖形關(guān)于某直線對稱,那么對稱軸是對應(yīng)點連線的垂直平分線

  34定理3兩個圖形關(guān)于某直線對稱,如果它們的對應(yīng)線段或延長線相交,那么交點在對稱軸上

  35逆定理如果兩個圖形的對應(yīng)點連線被同一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱

  36勾股定理直角三角形兩直角邊a、b的平方和、等于斜邊c的平方,即a^2+b^2=c^2

  37勾股定理的逆定理如果三角形的三邊長a、b、c有關(guān)系a^2+b^2=c^2,那么這個三角形是直角三角形

  38定理四邊形的內(nèi)角和等于360°

  39四邊形的外角和等于360°

  40多邊形內(nèi)角和定理n邊形的內(nèi)角的和等于(n-2)×180°

  41推論任意多邊的外角和等于360°

  42平行四邊形性質(zhì)定理1平行四邊形的對角相等

  43平行四邊形性質(zhì)定理2平行四邊形的對邊相等

  44推論夾在兩條平行線間的平行線段相等

  45平行四邊形性質(zhì)定理3平行四邊形的對角線互相平分

  46平行四邊形判定定理1兩組對角分別相等的四邊形是平行四邊形

  47平行四邊形判定定理2兩組對邊分別相等的四邊形是平行四邊形

  48平行四邊形判定定理3對角線互相平分的四邊形是平行四邊形

  49平行四邊形判定定理4一組對邊平行相等的四邊形是平行四邊形

  50矩形性質(zhì)定理1矩形的四個角都是直角

  51矩形性質(zhì)定理2矩形的對角線相等

  52矩形判定定理1有三個角是直角的四邊形是矩形

  53矩形判定定理2對角線相等的平行四邊形是矩形

  54菱形性質(zhì)定理1菱形的四條邊都相等

  55菱形性質(zhì)定理2菱形的對角線互相垂直,并且每一條對角線平分一組對角

  56菱形面積=對角線乘積的一半,即S=(a×b)÷2

  57菱形判定定理1四邊都相等的四邊形是菱形

  58菱形判定定理2對角線互相垂直的平行四邊形是菱形

  59正方形性質(zhì)定理1正方形的四個角都是直角,四條邊都相等

  60正方形性質(zhì)定理2正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角

  61定理1關(guān)于中心對稱的兩個圖形是全等的

  八年級上冊數(shù)學(xué)第二章知識點歸納4

  實數(shù)的概念

  實數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學(xué)上,實數(shù)定義為與數(shù)軸上的實數(shù),是有理數(shù)和無理數(shù)的總稱。數(shù)學(xué)上,實數(shù)定義為與數(shù)軸上的實數(shù),點相對應(yīng)的數(shù)。實數(shù)可以直觀地看作有限小數(shù)與無限小數(shù),實數(shù)和數(shù)軸上的點一一對應(yīng)。但僅僅以列舉的方式不能描述實數(shù)的整體。實數(shù)和虛數(shù)共同構(gòu)成復(fù)數(shù)。

  實數(shù)可以分為有理數(shù)和無理數(shù)兩類,或代數(shù)數(shù)和超越數(shù)兩類。實數(shù)集通常用黑正體字母R表示。R表示n維實數(shù)空間。實數(shù)是不可數(shù)的。實數(shù)是實數(shù)理論的核心研究對象。

  實數(shù)有什么范圍

  在實數(shù)范圍內(nèi),是指對于全體實數(shù)都成立,實數(shù)包括有理數(shù)和無理數(shù),也可以分為正實數(shù),0和負實數(shù),不只是大于等于0,還包括負實數(shù)。

  整數(shù)和小數(shù)的集合也是實數(shù),實數(shù)的定義是:有理數(shù)和無理數(shù)的集合。

  而整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù),小數(shù)分為有限小數(shù),無限循環(huán)小數(shù),無限不循環(huán)小數(shù)(即無理數(shù)),其中有限小數(shù)和無限循環(huán)小數(shù)均能化為分?jǐn)?shù)。

  所以小數(shù)即為分?jǐn)?shù)和無理數(shù)的集合,加上整數(shù),即為整數(shù)-分?jǐn)?shù)-無理數(shù),也就是有理數(shù)-無理數(shù),即實數(shù)。

  實數(shù)的性質(zhì)

  1.基本運算:

  實數(shù)可實現(xiàn)的基本運算有加、減、乘、除、平方等,對非負數(shù)還可以進行開方運算。

  實數(shù)加、減、乘、除(除數(shù)不為零)、平方后結(jié)果還是實數(shù)。

  任何實數(shù)都可以開奇次方,結(jié)果仍是實數(shù),只有非負實數(shù),才能開偶次方其結(jié)果還是實數(shù)。

  有理數(shù)范圍內(nèi)的運算律、運算法則在實數(shù)范圍內(nèi)仍適用:

  交換律:a+b=b+a,ab=ba

  結(jié)合律:(a+b)+c=a+(b+c)

  分配律:a(b+c)=ab+ac

  2.實數(shù)的相反數(shù):

  實數(shù)的相反數(shù)的意義和有理數(shù)的相反數(shù)的意義相同。

  實數(shù)只有符號不同的兩個數(shù),它們的和為零,我們就說其中一個是另一個的相反數(shù)。

  實數(shù)a的相反數(shù)是-a,a和-a在數(shù)軸上到原點0的距離相等。

  3.實數(shù)的絕對值:

  實數(shù)的絕對值的意義和有理數(shù)的絕對值的意義相同。一個正實數(shù)的絕對值等于它本身;

  一個負實數(shù)的絕對值等于它的相反數(shù),0的絕對值是0,實數(shù)a的絕對值是:|a|

 、賏為正數(shù)時,|a|=a(不變)

 、赼為0時,|a|=0

 、踑為負數(shù)時,|a|=a(為a的相反數(shù))

  (任何數(shù)的絕對值都大于或等于0,因為距離沒有負的。)

  4實數(shù)的倒數(shù):

  實數(shù)的倒數(shù)與有理數(shù)的倒數(shù)一樣,如果a表示一個非零的實數(shù),那么實數(shù)a的倒數(shù)是:1/a(a≠0)

  初中數(shù)學(xué)分式的運算知識點

  乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。

  除法:除以一個分式等于乘以這個分式的倒數(shù)。

  加減法:

 、偻帜阜质较嗉訙p,分母不變,把分子相加減。

  ②異分母的分式先通分,化為同分母的分式,再加減。

  分式方程:

 、俜帜钢泻形粗獢(shù)的方程叫分式方程。

 、谑狗匠痰姆帜笧0的解稱為原方程的增根。

  一元一次方程根的情況

  利用根的判別式去了解,根的判別式可在書面上可以寫為“△”。

  數(shù)學(xué)學(xué)習(xí)方法訣竅

  養(yǎng)成良好的解題習(xí)慣

  要想學(xué)好數(shù)學(xué),多做題目是難免的,熟悉掌握各種題型的解題思路。剛開始要從基礎(chǔ)題入手,以課本上的習(xí)題為準(zhǔn),反復(fù)練習(xí)打好基礎(chǔ),再找一些課外的習(xí)題,以幫助開拓思路,提高自己的分析、解決能力,掌握一般的解題規(guī)律。對于一些易錯題,可備有錯題集,寫出自己的解題思路和正確的解題過程兩者一起比較找出自己的錯誤所在,以便及時更正。

  在平時要養(yǎng)成良好的解題習(xí)慣。讓自己的精力高度集中,使大腦興奮,思維敏捷,能夠進入最佳狀態(tài),在考試中能運用自如。實踐證明:越到關(guān)鍵時候,你所表現(xiàn)的解題習(xí)慣與平時練習(xí)無異。如果平時解題時隨便、粗心、大意等,往往在大考中充分暴露,故在平時養(yǎng)成良好的解題習(xí)慣是非常重要的。

  正確對待考試

  首先,應(yīng)把主要精力放在基礎(chǔ)知識、基本技能、基本方法這三個方面上,因為每次考試占絕大部分的也是基礎(chǔ)性的題目,而對于那些難題及綜合性較強的題目作為調(diào)劑,認真思考,盡量讓自己理出頭緒,做完題后要總結(jié)歸納。調(diào)整好自己的心態(tài),使自己在任何時候鎮(zhèn)靜,思路有條不紊,克服浮躁的情緒。特別是對自己要有信心,永遠鼓勵自己,除了自己,誰也不能把我打倒,要有自己不垮,誰也不能打垮我的自豪感。

  在考試前要做好準(zhǔn)備,練練常規(guī)題,把自己的思路展開,切忌考前去在保證正確率的前提下提高解題速度。對于一些容易的基礎(chǔ)題要有十二分把握拿全分;對于一些難題,也要盡量拿分,考試中要學(xué)會嘗試得分,使自己的水平正常甚至超常發(fā)揮。

  八年級上冊數(shù)學(xué)第二章知識點歸納5

  1、實數(shù)的概念及分類

 、賹崝(shù)的分類

  ②無理數(shù)

  無限不循環(huán)小數(shù)叫做無理數(shù)。

  在理解無理數(shù)時,要抓住“無限不循環(huán)”這一時之,歸納起來有四類:

  開方開不盡的數(shù),如 √7 ,3 √2等;

  有特定意義的數(shù),如圓周率π,或化簡后含有π的數(shù),如π /?+8等;

  有特定結(jié)構(gòu)的數(shù),如0.1010010001等;

  某些三角函數(shù)值,如sin60°等

  2、實數(shù)的倒數(shù)、相反數(shù)和絕對值

 、傧喾磾(shù)

  實數(shù)與它的相反數(shù)是一對數(shù)(只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零),從數(shù)軸上看,互為相反數(shù)的兩個數(shù)所對應(yīng)的點關(guān)于原點對稱,如果a與b互為相反數(shù),則有a+b=0,a=-b,反之亦成立。

 、诮^對值

  在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值。|a|≥0。0的絕對值是它本身,也可看成它的相反數(shù),若|a|=a,則a≥0;若|a|=-a,則a≤0。

 、鄣箶(shù)

  如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和-1。0沒有倒數(shù)。

 、軘(shù)軸

  規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,要注意上述規(guī)定的三要素缺一不可)。

  解題時要真正掌握數(shù)形結(jié)合的思想,理解實數(shù)與數(shù)軸的點是一一對應(yīng)的,并能靈活運用。

 、莨浪

  3、平方根、算數(shù)平方根和立方根

 、偎阈g(shù)平方根

  一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x就叫做a的算術(shù)平方根。特別地,0的算術(shù)平方根是0。

  性質(zhì):正數(shù)和零的算術(shù)平方根都只有一個,0的算術(shù)平方根是0。

 、谄椒礁

  一般地,如果一個數(shù)x的平方等于a,即x2=a,那么這個數(shù)x就叫做a的平方根(或二次方根)。

  性質(zhì):一個正數(shù)有兩個平方根,它們互為相反數(shù);零的平方根是零;負數(shù)沒有平方根。

  開平方求一個數(shù)a的平方根的運算,叫做開平方。注意 √a的雙重非負性:√a≥0 ; a≥0

 、哿⒎礁

  一般地,如果一個數(shù)x的立方等于a,即x3=a,那么這個數(shù)x就叫做a 的立方根(或三次方根)。

  表示方法:記作 3 √a

  性質(zhì):一個正數(shù)有一個正的立方根;一個負數(shù)有一個負的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,這說明三次根號內(nèi)的負號可以移到根號外面。

  4、實數(shù)大小的比較

 、賹崝(shù)比較大小

  正數(shù)大于零,負數(shù)小于零,正數(shù)大于一切負數(shù);

  數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;

  兩個負數(shù),絕對值大的反而小。

 、趯崝(shù)大小比較的幾種常用方法

  數(shù)軸比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。

  求差比較:設(shè)a、b是實數(shù) a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比較法:設(shè)a、b是兩正實數(shù),

  絕對值比較法:設(shè)a、b是兩負實數(shù),則∣a∣>∣b∣a<b。

  平方法:設(shè)a、b是兩負實數(shù),則 a2>b2a<b 。

  5、算術(shù)平方根有關(guān)計算(二次根式)

  ①含有二次根號“ √ ”;被開方數(shù)a必須是非負數(shù)。

 、谛再|(zhì):

  ③運算結(jié)果若含有“ √ ”形式,必須滿足:

  被開方數(shù)的因數(shù)是整數(shù),因式是整式

  被開方數(shù)中不含能開得盡方的因數(shù)或因式

  6、實數(shù)的運算

 、倭N運算:加、減、乘、除、乘方 、開方。

 、趯崝(shù)的運算順序

  先算乘方和開方,再算乘除,最后算加減,如果有括號,就先算括號里面的。

 、圻\算律

  加法交換律 a+b= b+a

  加法結(jié)合律 (a+b)+c= a+( b+c )

  乘法交換律 ab= ba

  乘法結(jié)合律 (ab)c = a( bc )

  乘法對加法的分配律 a( b+c )=ab+ac

  八年級上冊數(shù)學(xué)第二章知識點歸納6

  平行四邊形

  1、平行四邊形的定義

  兩組對邊分別平行的四邊形叫做平行四邊形。

  2、平行四邊形的性質(zhì)

  (1)平行四邊形的對邊平行且相等。

  (2)平行四邊形相鄰的角互補,對角相等

  (3)平行四邊形的對角線互相平分。

  (4)平行四邊形是中心對稱圖形,對稱中心是對角線的交點。

  常用點:

  (1)若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段的中點是對角線的交點,并且這條直線二等分此平行四邊形的面積。

  (2)推論:夾在兩條平行線間的平行線段相等。

  3、平行四邊形的判定

  (1)定義:兩組對邊分別平行的四邊形是平行四邊形

  (2)定理1:兩組對角分別相等的四邊形是平行四邊形

  (3)定理2:兩組對邊分別相等的四邊形是平行四邊形

  (4)定理3:對角線互相平分的四邊形是平行四邊形

  (5)定理4:一組對邊平行且相等的四邊形是平行四邊形

  4、兩條平行線的距離。兩條平行線中,一條直線上的任意一點到另一條直線的距離,叫做這兩條平行線的距離。平行線間的距離處處相等。

  5、平行四邊形的面積

  S平行四邊形=底邊長×高=ah

  數(shù)學(xué)八年級學(xué)習(xí)方法

  掌握數(shù)學(xué)學(xué)習(xí)實踐階段:在高中數(shù)學(xué)學(xué)習(xí)過程中,我們需要使用正確的學(xué)習(xí)方法,以及科學(xué)合理的學(xué)習(xí)規(guī)則。先生著名的日本教育在米山國藏在他的數(shù)學(xué)精神、思想和方法,曾經(jīng)說過,尤其是高階段的數(shù)學(xué)學(xué)習(xí)數(shù)學(xué),必須遵循“分層原則”和“循序漸進”的原則。與教學(xué)內(nèi)容的第一周甚至是從基礎(chǔ)開始,一周后的頭幾天,在教學(xué)難以提升。以及提升的困難進步一步一步,最好不要去追求所謂的“困難”除了(感興趣),不利于解決問題方法掌握連續(xù)性。同時,根據(jù)時間和課程安排的長度適當(dāng)?shù)膶彶,只有這樣才能記住和使用在長期學(xué)習(xí)數(shù)學(xué)知識,不要忘記前面的學(xué)習(xí)。

  數(shù)學(xué)八年級學(xué)習(xí)技巧

  初中數(shù)學(xué)的快速記憶法之歌訣記憶

  就是把要記憶的數(shù)學(xué)知識編成歌謠、口訣或順口溜,從而便于記憶。比如,量角的方法,就可編出這樣幾句歌訣:“量角器放角上,中心對準(zhǔn)頂點,零線對著一邊,另一邊看度數(shù)!痹偃纾(shù)點位置移動引起數(shù)的大小變化,“小數(shù)點請你跟我走,走路先要找準(zhǔn)‘左’和‘右’;橫撇帶口是個you,擴大向you走走走;橫撇加個zuo,縮小向zuo走走走;十倍走一步百倍兩步走,數(shù)位不夠找‘0’拉拉鉤。”采用這種方法來記憶,學(xué)生不僅喜歡記,而且記得牢。

  八年級上冊數(shù)學(xué)第二章知識點歸納7

  一、平面直角坐標(biāo)系:

  在平面內(nèi)有公共原點而且互相垂直的兩條數(shù)軸,構(gòu)成了平面直角坐標(biāo)系。

  二、知識點與題型總結(jié):

  1、由點找坐標(biāo):

  A點的坐標(biāo)記作A( 2,1 ),規(guī)定:橫坐標(biāo)在前,縱坐標(biāo)在后。

  2、由坐標(biāo)找點:例找點B( 3,-2 )

  由坐標(biāo)找點的方法:先找到表示橫坐標(biāo)與縱坐標(biāo)的點,然后過這兩點分別作x軸與y軸的垂線,垂線的交點就是該坐標(biāo)對應(yīng)的點。

  各象限點坐標(biāo)的符號:

  ①若點P(x,y)在第一象限,則x > 0,y > 0 ;

 、谌酎cP(x,y)在第二象限,則x < 0,y > 0 ;

 、廴酎cP(x,y)在第三象限,則x < 0,y < 0 ;

  ④若點P(x,y)在第四象限,則x > 0,y < 0 。

  典型例題:

  例1、點P的坐標(biāo)是(2,-3),則點P在第四象限。

  例2、若點P(x,y)的坐標(biāo)滿足xy>0,則點P在第一或三象限。

  例3、若點A的坐標(biāo)為(a^2+1, -2–b^2) ,則點A在第四象限。

  4、坐標(biāo)軸上點的坐標(biāo)符號:

  坐標(biāo)軸上的點不屬于任何象限。

 、 x軸上的點的縱坐標(biāo)為0,表示為(x,0),

 、 y軸上的點的橫坐標(biāo)為0,表示為(0,y),

  ③原點(0,0)既在x軸上,又在y軸上。

  例4、點P(x,y )滿足xy = 0,則點P在x軸上或y軸上。 .

  5、與坐標(biāo)軸平行的兩點連線:

 、偃鬉B‖ x軸,則A、B的縱坐標(biāo)相同;

 、谌鬉B‖ y軸,則A、B的橫坐標(biāo)相同。

  例5、已知點A(10,5),B(50,5),則直線AB的位置特點是(A )

  A、與x軸平行B、與y軸平行C、與x軸相交,但不垂直D、與y軸相交,但不垂直

  6、象限角平分線上的點:

  ①若點P在第一、三象限角的平分線上,則P( m, m );

  ②若點P在第二、四象限角的平分線上,則P( m, -m )。

  例6、已知點A(2a+1,2+a)在第二象限的平分線上,試求A的坐標(biāo)。

  解:由條件可知:2a+1 +(2+a)=0,解得a = -1,

  ∴ A(-1,1)。

  例7、已知點M(a+1,3a-5)在兩坐標(biāo)軸夾角的平分線上,試求M的坐標(biāo)。

  解:當(dāng)在一、三象限角平分線上時,a+1=3a-5,

  解得:a=3 ∴ M(4,4)

  當(dāng)在二、四象限角平分線上時,a+1+(3a-5 )=0,

  解得:a=1 ∴ M(2,-2)

  ∴M的坐標(biāo)為(4,4)或(2,-2)

  7、關(guān)于坐標(biāo)軸、原點的對稱點:

 、冱c(a, b )關(guān)于X軸的對稱點是(a , -b );

 、邳c(a, b )關(guān)于Y軸的對稱點是( -a , b );

 、埸c(a, b )關(guān)于原點的對稱點是( -a , -b )。

  例8、已知點A(3a-1,1+a)在第一象限的平分線上,試求A關(guān)于原點的對稱點的坐標(biāo)。

  解:由條件得:3a-1=1+a解得:a=1,∴ A(2,2)。

  ∴ A關(guān)于原點的對稱點的坐標(biāo)為(-2,-2)。

  8、點到坐標(biāo)軸的距離:

 、冱c( x, y )到x軸的距離是∣y∣;

  ②點( x, y )到x軸的距離是∣x∣。

  例9、點P到x軸、y軸的距離分別是2,1,則點P的坐標(biāo)可能為?

  答案:(1,2)、(1,-2)、(-1,2)、(-1,-2) 。

  三、知識拓展與提高:

  例10、在平面直角坐標(biāo)系中,已知兩點A(0,1),B(8,5),點P在x軸上,則PA + PB的最小值是多少?

  解:作點A(0,1)關(guān)于x軸的對稱點A'(0,-1),連接A'B與x軸交于點P,

  則A'B路徑最短,即PA + PB最小。

  根據(jù)勾股定理得:A'B = √[(1+5)^2 + 8^2] = 10 。

  ∴PA + PB的最小值是10 。

  如何學(xué)好初中數(shù)學(xué)的方法

  多做練習(xí)題

  要想學(xué)好初中數(shù)學(xué),必須多做練習(xí),我們所說的“多做練習(xí)”,不是搞“題海戰(zhàn)術(shù)”。只做不思,不能起到鞏固概念,拓寬思路的作用,而且有“副作用”:把已學(xué)過的知識攪得一塌糊涂,理不出頭緒,浪費時間又收獲不大,我們所說的“多做練習(xí)”,是要大家在做了一道新穎的題目之后,多想一想:它究竟用到了哪些知識,是否可以多解,其結(jié)論是否還可以加強、推廣等等。

  課后總結(jié)和反思

  在進行單元小結(jié)或?qū)W期總結(jié)時,要做到以下幾點:一看:看書、看筆記、看習(xí)題,通過看,回憶、熟悉所學(xué)內(nèi)容;二列:列出相關(guān)的知識點,標(biāo)出重點、難點,列出各知識點之間的關(guān)系,這相當(dāng)于寫出總結(jié)要點;三做:在此基礎(chǔ)上有目的、有重點、有選擇地解一些各種檔次、類型的習(xí)題,通過解題再反饋,發(fā)現(xiàn)問題、解決問題。

  初中數(shù)學(xué)有理數(shù)知識點

  1、有理數(shù)的加法運算

  同號兩數(shù)來相加,絕對值加不變號。

  異號相加大減小,大數(shù)決定和符號。

  互為相反數(shù)求和,結(jié)果是零須記好。

  “大”減“小”是指絕對值的大小。

  2、有理數(shù)的減法運算

  減正等于加負,減負等于加正。

  有理數(shù)的乘法運算符號法則。

  同號得正異號負,一項為零積是零。

  3、有理數(shù)混合運算的四種運算技巧

  轉(zhuǎn)化法:一是將除法轉(zhuǎn)化為乘法,二是將乘方轉(zhuǎn)化為乘法,三是在乘除混合運算中,通常將小數(shù)轉(zhuǎn)化為分?jǐn)?shù)進行約分計算。

  湊整法:在加減混合運算中,通常將和為零的兩個數(shù),分母相同的兩個數(shù),和為整數(shù)的兩個數(shù),乘積為整數(shù)的兩個數(shù)分別結(jié)合為一組求解。

  分拆法:先將帶分?jǐn)?shù)分拆成一個整數(shù)與一個真分?jǐn)?shù)的和的形式,然后進行計算。

  巧用運算律:在計算中巧妙運用加法運算律或乘法運算律往往使計算更簡便。

【八年級上冊數(shù)學(xué)第二章知識點歸納】相關(guān)文章:

八年級數(shù)學(xué)上冊知識點歸納第二章04-08

命題八年級上冊數(shù)學(xué)第二章復(fù)習(xí)知識點歸納03-05

正數(shù)與負數(shù)初一上冊數(shù)學(xué)第二章知識點歸納10-16

數(shù)學(xué)上冊實數(shù)的知識點歸納01-19

初二數(shù)學(xué)上冊知識點歸納06-24

初二數(shù)學(xué)上冊的知識點歸納08-26

八年級上冊數(shù)學(xué)知識點歸納01-03

八年級上冊數(shù)學(xué)實數(shù)知識點歸納01-19

八年級數(shù)學(xué)上冊知識點歸納10-31